Lab3: Attitude Determination with the CubeSatSim

Lab Objective

In this lab, you will explore the process of attitude determination using the CubeSatSim, a simulated CubeSat platform equipped with **Inertial Measurement Unit (IMU)** sensors. Attitude determination is a critical aspect of satellite operation, as it involves calculating and maintaining the orientation of the satellite in space. Through this lab, you will gain practical experience in using accelerometer and gyroscope data from IMU sensors to estimate the CubeSat's orientation.

Lab instruction

Step1: Receive Radio from your satellite

From the ground station, start to receive the signal from your satellite.

Step2: Rotate your satellite

The data receiving frequency of the ground station is not much high as expected, so slowly change the orientation of the satellite.

Step2: Download CSV Data from the Ground Station

As previously you did, click each component and save csv files into './CSV_Files'. Keep naming conventions as 'x_imu_dps' and 'x_imu_acc', 'y_imu_dps' , 'y_imu_acc', 'z_imu_dps' , 'z_imu_acc'. This is not required to create your own python file.

			Fox-in-box-v3 (Fox-in-box-v3) - VNC Viewer									
) 🕘 🛅 🗾 🔇	🗊 ams	SAT Tele	emetry Ana	al				V 5	8 1	17:	02 🌒	
e Decoder Spacecraft	Help	-					_					
Input CubeSatSim	-BPSK	Cube	Satsim-F	SK								
ealth Measurements	5	_										
tellite CubeSatSim-	FSK(E	M) M	ode: TR	ANSPONDER				Telemetry I	Paylo	ads De	coded:	27
test Realtime: Epo	och: 58	B Upti	ime: 146	Max:	Epoch: 46	Upti	me: 452	Min: Epoch	: 46	Uptim	e: 3/4	_
Radio				Computer Hardware				Computer Software				
RSSI (dBm) TX Antenna RX Antenna	RT 0 Deploye Stowed	MIN 0 ed	MAX 0	IHU Temp (Pi) (C I2C Bus 1 I2C Bus 3 Camera	RT 35.2 OK OK OK	MIN 39.0	MAX 40.1	Spacecraft Spin (rpm) Safe Mode Ground Commands Simulated Telemetry	RT 0.0 OFF 0 ON	MIN 0.0	MAX 0.0	
								Experiments				12
Battery Cell A+B+C Voltage (V)	RT 4.1	MIN 3.7	MAX 3.7	PSU	RT	MIN	MAX	STEM Payload Status BME280 Temp (C) BME280 Pressure (hPa)	RT OK 0.0 0.0	MIN 0.0 0.0	MAX 0.0 0.0	
Current (mA)	-170.0	205.0	309.0	Current (mA)	163.0	133.0	195.0	BME280 Altitude (m) BME280 Humidity (%) Diode Temp (C) Sensor 2 (signed scal	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
+X Panel				+Y Panel				+Z Panel		_		
Voltage (V)	RT 1.2	MIN 2.0	MAX 3.9	Voltage (V)	RT 1.0	MIN 1.6	MAX 3.9	Voltage (V)	RT 1.0	MIN 1.8	MAX 1.9	
Rotation (dps) Acceleration (g)	0 0.0	0 0.0	0 0.0	Rotation (dps) Acceleration (g)	0 0.0	0 0.0	0 0.0	Rotation (dps) Acceleration (g)	0 0.0	0 0.0	0 0.0	
-x Panel				-Y Paner				-z Paner				
Voltage (V) Current (mA)	RT 0.9 0.0	MIN 1.4 0.0	MAX 3.9 4.0	Voltage (V) Current (mA)	RT 4.4 245.0	MIN 1.8 0.0	MAX 3.9 10.0	Voltage (V) Current (mA)	RT 0.9 0.0	MIN 1.1 0.0	MAX 3.4 0.0	
Current ORT MAX) MIN	🗌 Disp	lay Raw Va	alues 🗹 Display	UTC Time		La	st 180 sample	s Capt	ured: 202	1/10/16 21	:02::

Step3: Download or Copy Python Code (If you are running the reference code)

Link to Lab3 Code

Step4: Let's check the Result

If you want to convert radian to degree, you can simply multiply 180/pi. Verify if the sensor worked!